
Chainguard Malware unpacked

Sha1-Hulud: The Preinstall Worm That
Hijacked 26,000 Repos

What Happened?

"Sha1-Hulud" is a sophisticated worm that weaponized the npm install command itself. Instead of waiting for a package to be fully installed, the malware

triggers immediately via a preinstall hook (). This script downloads the Bun runtime to execute a heavily obfuscated payload

() in memory.

Standard security tools scan files only after the installation finishes. Sha1-Hulud exploits this blind spot by executing during the download process—

stealing secrets before a scan occurs. Once active, the worm operates autonomously: it harvests the victim's npm tokens, downloads every package they

maintain, injects itself, bumps the version number, and republishes the poisoned versions—all in minutes. If the worm is unable to find credentials, it wipes

the victim’s home directory.

setup_bun.js

bun_environment.js

What Happened?

Maintainer

Infected bot

GitHub PAT stolen  
from PostHog bot

Source

Build

Local build

Preinstall script

inserts malware through

setup_bun.js

Checks for C2 connection

Distribution

Infection spread

60% of infections

through postman and

asyncapi

Developers

Replication

Devs install packages

Token stolen

‘Dead Man’s Switch’

Packages republished

(victims become

attackers)

Dependencies

Malware injected in
preinstall script,
exposing secrets, wiping
data, and propagating to
next maintainer.

Understanding how
Sha1-Hulud HAPPENED

Impact

Blast Radius

~500 packages poisoned (132M+

downloads) and 30,000+ impacted

repositories in 72 hours.

Data Exfiltration

700+ AWS, GCP, and Azure

credentials and 700+ GitHub

access tokens made public.

Brand Damage

Trojanized packages from industry

giants like Zapier, Postman, and

PostHog spread the worm.

Destructive Risk

Features a "dead man's switch"

capable of wiping the victim's

home directory if C2 access is lost.

The Chainguard Difference

Chainguard Libraries prevents this entire class of attack because every artifact is built from verifiable upstream source, not registry artifacts. While the rest

industry downloads the poisoned tarball from npm (where the preinstall script lives), Chainguard builds the software directly from the verified source code.

We bypass the registry entirely—never ingesting the malicious code. Plus, our build pipeline strictly disables install-time scripts by default, as these scripts

are known to contain malware. In turn, Chainguard neutralizes the vector before it can execute.

Prevent entire classes  
of supply chain attacks

Access 100K+ libraries built in an isolated,

tamper-proof environment that neutralizes

build-time and distribution-based malware

injections by default.

Eliminate “are we  
impacted?” fire drills

When the next headline-grabbing library

attack hits, don’t stall development to prove a

negative. Insulate your team against the panic

and disruption of upstream compromises.

Streamline compliance
evidence

Prove that your libraries are protected from

third-party manipulation by providing auditors

with automated provenance and signed

SBOMs that verify component integrity.

Learn more at chainguard.dev/libraries.

https://chainguard.dev/libraries

