A Chainguard MALWARE UNPACKED

Shal-Hulud: The Preinstall Worm That

Hijacked 26,000 Repos

What Happened?

"Shal-Hulud" is a sophisticated worm that weaponized the npm install command itself. Instead of waiting for a package to be ful

triggers immediately via a preinstall hook (setup_bun. js). This script downloads the Bun runtime to execute a heavily obfuscateo

(bun_environment.js)in memory.

y installed, the malware

payload

Standard security tools scan files only after the installation finishes. Shal-Hulud exploits this blind spot by executing during the download process—

stealing secrets before a scan occurs. Once active, the worm operates autonomously: it harvests the victim's npm tokens, downloads every package they

maintain, injects itself, bumps the version number, and republishes the poisoned versions—all in minutes. If the worm is unable to find credentials, it wipes

the victim's home directory.

UNDERSTANDING HOW
SHA1-HULUD HAPPENED B

N

Build Distribution

Local build Infection spread

& Maintainer Source ® Preinstall script 60% of infections C°® Developers

inserts malware through through postman and
setup_bun.js asyncapn

Checks for C2 connection

Infected bot

GitHub PAT stolen
from PostHog bot

Replication

Devs install packages
Token stolen

‘Dead Man’s Switch’

Malware injected in onas by e
. preinstall script, aEtackets)
Dependencies exposing secrets, wiping
data, and propagating to
next maintainer.
\

Impact
Blast Radius Data Exfiltration Brand Damage Destructive Risk
~500 packages poisoned (132M+ /00+ AWS, GCP, and Azure Trojanized packages from industry Features a "dead man's switch”
downloads) and 30,000+ impacted credentials and 700+ GitHub giants like Zapier, Postman, and capable of wiping the victim's
repositories in /2 hours. access tokens made public. PostHog spread the worm. home directory if C2 access is lost.

-+, The Chainguard Difference

Chainguard Libraries prevents this entire class of attack because every artifact is built from verifiable upstream source, not registry artifacts. While the rest

industry downloads the poisoned tarball from npm (where the preinstall script lives), Chainguard builds the software directly from
We bypass the registry entirely—never ingesting the malicious code. Plus, our build pipeline strictly disables install-time scripts by

are known to contain malware. In turn, Chainguard neutralizes the vector before it can execute.

the verified source code.

default, as these scripts

1 Prevententireclasses o Eliminate “are we n n Streamline compliance

= of supply chain attacks " impacted?” fire drills evidence
Access 100K+ libraries built in an isolated, When the next headline-grabbing library Prove that your libraries are protected from
tamper-proof environment that neutralizes attack hits, don't stall development to prove a third-party manipulation by providing auditors
build-time and distribution-based malware negative. Insulate your team against the panic with automated provenance and signed
injections by default. and disruption of upstream compromises. SBOMs that verify component integrity.

LEARN MORE AT CHAINGUARD.DEV/LIBRARIES.

o


https://chainguard.dev/libraries

